Clinostats and bioreactors.
نویسنده
چکیده
The environment created on Earth within a clinostat or Rotating Wall Vessel (RWV) bioreactor is often referred to as "simulated microgravity". Both devices utilize constant reorientation to effectively nullify cumulative sedimentation of particles. Neither, however, can fully reproduce the concurrent lack of structural deformation, displacement of intercellular components and/or reduced mass transfer in the extracellular fluid that occur in actual weightlessness. Parameters including density, viscosity, and even container geometry must each be considered to determine the overall gravity-dependent effects produced by either a clinostat or the RWV bioreactor; in addition, the intended application of these two devices differs considerably. A state of particle "motionlessness" relative to the surrounding bulk fluid, which is nearly analogous to the extracellular environment encountered under weightless conditions, can theoretically be achieved through clinorotation. The RWV bioreactor, on the other hand, while similarly maintaining cells in suspension as they continually "fall" through the medium under 1 g conditions, can also purposefully induce a perfusion of nutrients to and waste from the culture. A clinostat, therefore, is typically used in an attempt to reproduce the quiescent, unstirred fluid conditions achievable on orbit; while the RWV bioreactor ideally creates a low shear, but necessarily mixed, fluid environment that is optimized for suspension culture and tissue growth. Other techniques for exploring altered inertial environments, such as freefall, neutral buoyancy and electromagnetic levitation, can also provide unique insight into how gravity affects biological systems. Ultimately, all underlying biophysical principles thought to give rise to gravity-dependent physiological responses must be identified and thoroughly examined in order to accurately interpret data from flight experiments or ground-based microgravity analogs.
منابع مشابه
Morphology of Arabidopsis Grown under Chronic Centrifugation and on the Clinostat.
Morphological measurements were made on populations of Arabidopsis thaliana grown from seed for 21 days under essentially constant environmental conditions except for the influence of gravitational or centrifugal accelerations. Growth conditions were what had been proposed for experiments in an artificial satellite. Observations are reported for plants grown at normal 1-g upright or on horizont...
متن کاملGrowth and Epinast of Marigold Plants Maintained from Emergence on Horizontal Clinostatst
Dry weight, leaf number, and leaf size of marigold plants (Tagetes patula) grown from emergence for 18 days on horizontal clinostats rotating at 15 revolutions per hour (rph), were similar to those of plants grown for the sme period on vertically oriented clinostats rotating at 15 rph. The horizontally grown plants exhibited some epinasty which disappeared when plants were placed upright for 24...
متن کاملEffect of Concentration of Cations on Activated Sludge Properties and Membrane Fouling in Membrane Bioreactors for Wastewater Treatment
This paper presents the results of an investigation on the effects of concentration of cations on activated sludge properties and membrane fouling in submerge membrane bioreactors. The working volume of the experimental setup was two liters. The cellulose acetate membrane was immersed in the bioreactor. The flocculability, settling properties and fouling propensity of activated sludge was measu...
متن کاملPerformance of Biological hydrogen Production Process from Synthesis Gas, Mass Transfer in Batch and Continuous Bioreactors
Biological hydrogen production by anaerobic bacterium, Rhodospirillum rubrum was studied in batch and continuous bioreactors using synthesis gas (CO) as substrate. The systems were operated at ambient temperature and pressure. Correlations available in the literature were used to estimate the gas-liquid mass transfer coefficients (KLa) in batch reactor. Based on experimental results for the con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2001